If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-9d+15=0
a = 1; b = -9; c = +15;
Δ = b2-4ac
Δ = -92-4·1·15
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{21}}{2*1}=\frac{9-\sqrt{21}}{2} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{21}}{2*1}=\frac{9+\sqrt{21}}{2} $
| 51/8+7/8k=6 | | -6w-34=4(w+4) | | 3/5(2r+15)=3 | | -8=-7y+4(y+4) | | 8-9x-3=-73+6x-12 | | -1.2x-2.6=-4.2 | | -2.5=x-2.7/0.5 | | -4x+19=10 | | 4x=91.80 | | 15/8x+51/5=123/4 | | 0.5=x-2.7/0.5 | | 15w=54+9w | | 15/8x+515=123/4 | | x^-2=0.99 | | x+(x+15)=120 | | x^-2=0.00 | | 7x-58=28-2x | | -8(w-3)=4w-24 | | 11/2+2x=6122 | | -1.0=x-2.7/0.5 | | x+-14=14 | | 4y/3-2y=16/5 | | 4(x-1)=2x-18 | | X-2(2x+3)=4-3x | | M(4m^2-7m-120)=0 | | 7x=22+27 | | -8x-3=3x-3 | | (24+-2y)+y=14 | | 4x/6=7x-26 | | 3x^2-28x-6=0 | | 3v^2+17v+24=5 | | 256x+2=163x-1 |